Physical/Chemical Properties

on back:

substance \(\equiv \) matter that has a definite composition; also known as a chemical

Physical Change \(\equiv \) a change which alters a substance without changing its composition.
(a phase change is a physical change of a substance from one state of matter to another)

ex. water \(\rightarrow \) steam \(
\rightarrow \) ice

change \(\equiv \) a process that involves one or more substances changing into new substances
(the properties of the products are different)

Law of Conservation of \(\equiv \) - Mass is neither created nor destroyed during a chemical reaction

Physical/Chemical Changes

on back:

The Law of Conservation of Mass

\[
\text{mass}_{\text{reactants}} = \text{mass}_{\text{products}}
\]
compound ≡ pure substance that cannot be separated into simpler substances

Element ≡ pure substance made of two or more different elements combined chemically in a definite proportion by mass

- the properties of a compound are different from those of its elements
- a compound always has the same composition

Compound

To separate mixtures - use a process based on the different physical properties of the components

<table>
<thead>
<tr>
<th>process</th>
<th>based on differences in</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>filtration</td>
<td>phases or</td>
<td>sand in water</td>
</tr>
<tr>
<td>distillation</td>
<td>boiling points</td>
<td></td>
</tr>
<tr>
<td>crystallization</td>
<td>solubility</td>
<td>rock candy</td>
</tr>
<tr>
<td>sublimation</td>
<td>phase change temps</td>
<td>iodine</td>
</tr>
<tr>
<td>chromatography</td>
<td>ability of component to travel across surface of another</td>
<td>ink</td>
</tr>
</tbody>
</table>

Separating Mixtures
Matter

on back:
- All things are made of matter
- Matter can be either a mixture or a pure substance
 - A **mixture** is a combination of two or more pure substances that retain their chemical properties
 - A **heterogeneous** mixture does not blend smoothly and is not uniform. ex. salad dressing, OJ
 - A **homogeneous** mixture blends smoothly and is uniform throughout. ex. solutions, alloys
 - Mixtures can be described as suspensions, colloids, or solutions based on the size of the particles.